Abstract

From financial markets and neuronal activity in the brain to the way forest fires and diseases spread, the dynamics of complex systems are governed by critical events and emergent phenomena that are exceedingly difficult to understand or predict from underlying principles. We recently discovered that a gas of ultracold atoms continuously driven to strongly-interacting Rydberg states by an off-resonant laser field displays all the hallmarks of complex systems dynamics in a highly-controllable experimental system: (i) At early times we observe rapid growth of Rydberg excitations that has a striking correspondence with the spreading of diseases empirically observed in epidemics [1]; (ii) At later times we find that the system evolves toward a self-organised critical (SOC) state [2], a phenomenon that has been conjectured to explain the abundance of scale-invariant systems found in nature. I will discuss how these experiments can be understood in terms of an emergent atomic network that bridges the gap between mathematical models and empirical observations. This provides the opportunity to identify general principles governing non-equilibrium dynamics and to learn how seemingly universal properties emerge from microscopic physical details.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.