Abstract

Abstract Background Clostridioides difficile is a common healthcare associated pathogen in U.S. hospitals, incurring billions of dollars in treatment costs each year. Microbiome analysis of C. difficile infected (CDI) patients have revealed alterations of the gut microbiota. It has been speculated that select members of this altered microbiota may influence C. difficile pathogenesis. C. difficile is known to reside in the intestinal mucus layer, but at present the interactions between C. difficile and other mucus-associated bacteria are poorly defined. To address these gaps in knowledge, we have focused on an entirely human-centered approach, employing human-derived MUC2, fecal bioreactors and patient samples. We hypothesized that select mucus-associated bacteria would promote C. difficile colonization and biofilm formation. Methods & Results To create a model of the human intestinal mucus layer and gut microbiota, we developed a bioreactor system with human MUC2-coated coverslips. Bioreactors were inoculated with healthy human feces, treated with clindamycin and infected with C. difficile to mimic CDI. C. difficile was found to colonize and form biofilms on MUC2-coated coverslips and 16S rRNA sequencing revealed a unique biofilm profile with substantial co-colonization with Fusobacterium. Consistent with our bioreactor data, publicly available datasets and patient stool samples revealed that a subset of patients with C. difficile infection harbored high levels of F. nucleatum OTUs. We also isolated microbes from adult patients and pediatric IBD patient stool who were positive for C. difficile and F. nucleatum and identified co-localization between these strains. RNAseq data revealed significant changes in C. difficile chemotaxis and surface adhesion genes following exposure to F. nucleatum metabolites. C. difficile was found to co-aggregate with F. nucleatum; an effect that was inhibited by blocking the Fusobacterial adhesin RadD and C. difficile flagella. Moreover, a ΔradD mutant of F. nucleatum lost the ability to aggregate with C. difficile. Conversely, removal of flagella from C. difficile significantly reduced the interaction between WT F. nucleatum and C. difficile. Addition of F. nucleatum also enhanced C. difficile biofilm formation, increasing the levels extracellular polysaccharide. Conclusions Collectively, these data demonstrate the unique role of mucus-associated bacteria such as F. nucleatum in facilitating colonization of the mucus layer by pathogenic C. difficile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call