Abstract

Clozapine is characterized by a large within- and between-patient variability in its pharmacokinetics, attributed to non-genetic and genetic factors. A cross-sectional analysis of clozapine trough concentration (Clz C0) issued from Tunisian schizophrenic patients was collected and analysed using a nonparametric modelling approach. We assessed the impact of demographic covariates (age, weight and sex), patient's habits (smoking status, alcohol and caffeine intake) and the genetic factors (CYP1A2*1C, CYP1A2*1F and CYP2C19*2 polymorphisms) on each pharmacokinetic parameter. An external validation of this pharmacokinetic model using an independent data set was performed. Fit goodness between observed- and individual-predicted data was evaluated using the mean prediction error (% MPE), the mean absolute prediction error (% MAPE) as a measure of bias, and the root mean squared error (% RMSE) as a measure of precision. Sixty-three CLz C0 values issued from 51 schizophrenic patients were assessed in this study and divided into building and validation groups. CYP1A2*1F polymorphism and smoking status were the only covariates significantly associated with clozapine clearance. Precision parameters were as follows: 1.02%, 0.95% and 22.4%, respectively, for % MPE, % MAPE and % RMSE. We developed and validated an accurate pharmacokinetic model able to predict Clz C0 in Tunisian schizophrenic patients using the two parameters CYP1A2*1F polymorphism and smoking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call