Abstract

Fast-charging lithium-ion cells require electrolyte solutions that balance high ionic conductivity and chemical stability. The introduction of an organic ester co-solvent is one route that can improve the rate capability of a cell. Several new co-solvent candidates were identified based on viscosity, permittivity (dielectric constant), and DFT-calculated electrochemical stability windows. Several formate, nitrile, ketone, and amide co-solvents are shown to increase the ionic conductivity of lithium hexafluorophosphate in conventional organic-carbonate-based solutions. Based on gas production during the first formation cycle in Li[Ni1-x-yCoxAly]O2/graphite-SiO pouch cells, five candidates were identified: methyl formate (MF), ethyl formate (EF), propionitrile (PN), isobutyronitrile (iBN), and dimethyl formamide (DMF). High temperature storage (60°C), long-term cycling, and ultrahigh-precision coulometry results indicate that MF offers the greatest balance between conductivity increase and cell lifetime. Future work is encouraged to develop more stable solution chemistries that incorporate MF. PN may prove useful for low temperature (< 40°C) applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.