Abstract

BackgroundN6-methyladenosine (m6A) is a highly enriched modification found in circular RNAs (CircRNAs); however, the ability and mechanism of CircRNAs to encode for m6A function in rheumatoid arthritis (RA) remain poorly understood. MethodsWe utilized an epitranscriptomic microarray to measure levels and quantities of m6A methylated CircRNAs in synovial tissues of patients with RA and osteoarthritis (OA). We then utilized methylated RNA immunoprecipitation- and MazF-quantitative PCR to identify and validate differentially m6A-methylated RNAs between the groups, conducted a functional enrichment analysis, and selected protein–protein interaction hub genes. Lastly, we predicted and validated the CircRNA/miRNA/mRNA interaction networks. ResultsWe detected 4,845 CircRNAs containing m6A in our samples, with 53 CircRNAs upregulated, and 139 CircRNAs downregulated compared to human OA synovial tissue (|fold change| ≥ 1.2 and p ≤ 0.05). The differentially m6A-modified CircRNAs were associated with the interleukin-6-mediated signaling pathway, with an increase in relative m6A-methylated levels of hsa_circ_0007259 in human RA, a significant decrease in hsa_miR-21-5p, and an increase in signal transducer and activator of transcription 3(STAT3). The Luciferase Reporter Gene assay verified the binding of hsa_circ_0007259 to hsa_miR-21-5p and the subsequent binding of hsa_miR-21-5p to STAT3. ConclusionWe showed a notable increase in the relative m6A-methylated levels of hsa_circ_0007259 in human RA, indicating a potential role of hypermethylated hsa_circ_0007259 in RA pathogenesis. This may provide valuable insight into the mechanism of RA and the possibility of utilizing hsa_circ_0007259 as a valuable biomarker.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call