Abstract

Corrosion of steel in concrete is one of the major problems with respect to the durability of reinforced concrete (RC) structures. Thus, monitoring the corrosion in real-time is essential to prevent structural damage. However, one of the main challenges is to simulate the real-time development of corrosion in the RC structure. In recent years, smart aggregates, also called embedded piezo sensors (EPS), have become increasingly popular for monitoring localized and corrosion damage in RC structures using electro-mechanical impedance (EMI). This paper presents the experimental and numerical investigation of corrosion in RC structures subjected to the chloride-laden environment using EPS via the EMI technique. To fulfil this objective, the study has been carried out in two stages such as; in the first stage, the experiments are conducted on the RC specimen, and the EMI response was obtained both in a pristine state and when accelerated corrosion progressed. In the second step, a numerical model of the RC specimen has been developed based on the experimental data in the COMSOL software, and the effect of corrosion in the form of varying mass loss percentages has been simulated. Based on the results, it is concluded that the experimental and numerical conductance signatures before and after corrosion are matched. The deterioration in terms of stiffness loss in the RC specimen was 18.20% at 30% mass loss.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.