Abstract

Lignin has been overlooked and used as a waste for long due to its complex and partially hydrophobic structure. Many efforts have been carried out to overcome these deficiencies and apply it as a high-value product, which are insufficient to reach the full potential of lignin in various advanced applications, since they require with procedures for the obtaining of more specific and fine-tuned chemical structures. This work focuses on the obtaining of differently structured hydrophilic lignins derived both from Kraft and organosolv isolation processes. The chemical structures of the different lignin types were studied, and the effect of the structural differences in the modification processes and their subsequent properties analyzed, valorizing their potential application for diverse purposes. The carboxymethylation and sulfomethylation reactions were carried out with the aim of enhancing the polarity of the lignin samples, while the methylation reaction aimed to obtain lignins with higher stability. The physicochemical analyses of the samples, carried out by FTIR, GPC, 31P NMR, 13C NMR, and HSQC NMR, verified the effectiveness of the chemical reactions and conditions selected, obtaining lignins with lower hydroxyl content, due to their substitution and insertion of carboxymetyl, sulfomethyl and methyl groups, therefore obtaining more condensed, aromatic and oxygenated aromatic carbon structures. While the methylation reaction was the most efficient in substituting the OH groups, due to its non-selectivity, OL showed higher modification yields than KL. In terms of the thermal and morphological properties, analyzed by DLS and TGA respectively, it was observed that the modified samples showed lower Z potential values, along with higher conductivity, being the sulfomethylated organosolv lignin the one showing the best results, which was also the one with the smallest particle size and polydispersity index. Finally, all the modified samples showed higher T50% values, suggesting a better stability towards degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.