Abstract

The vast potential of harnessing high entropy and abundantly available mechanical energy through triboelectric nanogenerators (TENGs) has attracted significant attention in recent years. However, the cost of harvesting this energy has often outweighed the energy collected. Recent advancements in TENGs for blue energy harvesting from water flow have shown great promise. In this study, we present a novel approach to optimize the performance of interdigitated electrode array-based TENGs operating in free-standing mode (IDA-FTENG) by introducing a gap-to-width ratio (GWR) relationship for the electrodes and its impact on the charge regeneration effects. We investigate the dependence of the charge regeneration effect on GWRs and the number of electrode pairs to enhance the performance of IDA-FTENGs, employing a rapid and industrially scalable laser scribing process for fabricating the devices. An optimized device, featuring a maximum of 34 interdigitated electrode grids, demonstrates a 140-fold increase in power density compared to conventional single electrode pair TENGs (SEP-TENGs). Furthermore, power density projections indicate that the optimized IDA-FTENGs can compete with current solar cells, if designed suitably. We showcase the applicability of the proposed IDA-FTENG devices in self-powered sensors, autonomous wireless operations, security monitoring, and smart home systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.