Abstract

Physically crosslinked poly(vinyl alcohol) (PVA) hydrogels prepared using a low-temperature thermally cycled process have tunable mechanical properties that fall within the range of soft tissues, including cardiovascular tissue. An approach to render it hemocompatible is by endothelization, but its hydrophilic nature is not conducive to cell adhesion and spreading. We investigated the functionalization reaction of this class of PVA hydrogel with fibronectin (FN) for adhesion and spreading of primary porcine radial artery cells and vascular endothelial cells. These are cells relevant to small-diameter vascular graft development. FN functionalization was achieved using a multistep reaction, but the activation step involving carbonyl diimidazole normally required for chemically crosslinked PVA was found to be unnecessary. The reaction resulted in an increase in the elastic modulus of the PVA hydrogel but is still well within the range of cardiovascular tissue. Confocal microscopy confirmed the adhesion and spreading of both cell types on the PVA-FN surfaces, whereas cells failed to adhere to the PVA control. This is a first step toward an alternative for the realization of a synthetic replacement small-diameter vascular graft.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call