Abstract

This work describes the development of a novel biosensor obtained by immobilizing laccase from Pleurotus ostreatus Florida onto a glassy carbon electrode platform modified with zinc oxide quantum dots. For enzyme immobilization, the exopolysaccharide botryosphaeran from Botryosphaeria rhodina MAMB-05 was used. Although both biomaterials are from different fungal sources, laccase immobilization was guaranteed, which was demonstrated by the excellent stability of the fabricated biosensor device for the voltammetric determination of 2,6-dimethoxyphenol (2,6-DMP). Under the optimal experimental conditions, the cathodic current from the square-wave voltammograms presented a linear dependence on the 2,6-DMP concentration within the range of 10-400 nmol L-1, with a limit of detection of 9 nmol L-1. This bioanalytical device exhibited excellent repeatability and long-term storage stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.