Abstract

The fast growth of distributed energy resources (DERs), such as distributed renewables (e.g., rooftop PV panels), energy storage systems, electric vehicles, and controllable appliances, drives the power system toward a decentralized system with bidirectional power flow. The coordination of DERs through an aggregator, such as a utility, system operator, or a third-party coordinator, emerges as a promising paradigm. However, it is not well understood how to enable trust between the aggregator and DERs to integrate DERs efficiently. In this paper, we develop a trustable and distributed coordination system for DERs using blockchain technology. We model various DERs and formulate a cost minimization problem for DERs to optimize their energy trading, scheduling, and demand response. We use the alternating direction method of multipliers (ADMM) to solve the problem in a distributed fashion. To implement the distributed algorithm in a trustable way, we design a smart contract to update multipliers and communicate with DERs in a blockchain network. We validate our design by experiments using real-world data, and the simulation results demonstrate the effectiveness of our algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.