Abstract

4,4'-Sulfonyl-diphenol (BPS), as a widespread environmental hormone-like micropollutant, is difficult to be degraded in the environment. In this study, the removal of BPS with multi-enzymes extracted from waste sludge and reed sediment was studied at 298K, 310K, and 328K. Results show that BPS could be removed efficiently and was time-temperature dependent, which could involve enzymolysis and bio-flocculation. The mechanism and pathways of the enzymolysis were identified with ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Polymerization of BPS with enzymolysis further improved the removal by bio-flocculation due to the production of BPS oligomers. Furthermore, the interaction mechanism between BPS and multi-enzyme was explored through a series of spectroscopic experiments. Results show that more loose skeletal structure of the multi-enzymes and more hydrophobic microenvironment of the amino acid residues are responsible for the removal of BPS. This research not only provided a method for refractory micropollutants removal but also a way for the utilization of waste sludge and reed sediment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.