Abstract
Heavy metal and Persistent Organic Pollutants (POPs) pollution stemming from industrialization, intensive agriculture, and other human activities pose significant environmental and health threats. These contaminants persist in the air, soil, and water, particularly in industrialized nations, adversely affecting human health and ecosystems. While physical and chemical methods exist for detoxifying contaminated soil, they often have drawbacks such as high cost and technical complexity. Bioremediation, utilizing plants and microbes, offers a promising solution. Certain microorganisms like Streptomyces, Aspergillus and plant species such as Hibiscus and Helianthus show high metal adsorption capacities, making them suitable for bioremediation. However, plants’ slow growth and limited remediation efficiency have been challenges. Recent advancements involve leveraging plant-associated microbes to enhance heavy metal removal. Additionally, nanotechnology, particularly nano-bioremediation, shows promise in efficiently removing contaminants from polluted environments by combining nanoparticles with bioremediation techniques. This review underscores bioremediation methods for heavy metals using plants and microbes, focusing on the role of Plant Growth Promoting Rhizobacteria (PGPR) in promoting phytoremediation. It also explores the implementation of nanotechnologies for eliminating metals from polluted soil, emphasizing the significance of soil microbiomes, nanoparticles, and contaminant interactions in developing effective nano-remediation strategies for optimizing agriculture in contaminated fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.