Abstract

Selectivity is a major issue in the development of drugs targeting pathogen aspartic proteases. Here, we explore the selectivity-determining factors by studying specifically designed malaria aspartic protease (plasmepsin) open-flap inhibitors. Metadynamics simulations are used to uncover the complex binding/unbinding pathways of these inhibitors and describe the critical transition states in atomistic resolution. The simulation results are compared with experimentally determined enzymatic activities. Our findings demonstrate that plasmepsin inhibitor selectivity can be achieved by targeting the flap loop with hydrophobic substituents that enable ligand binding under the flap loop, as such a behavior is not observed for several other aspartic proteases. The ability to estimate the selectivity of compounds before they are synthesized is of considerable importance in drug design; therefore, we expect that our approach will be useful in selective inhibitor designs against not only aspartic proteases but also other enzyme classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.