Abstract

Age prediction powered by artificial intelligence (AI) can be used as an objective technique to assess the cosmetic effect of rejuvenation surgery. Existing age-estimation models are trained on public datasets with the Caucasian race as the main reference, thus they are impractical for clinical application in Chinese patients. To develop and select an age-estimation model appropriate for Chinese patients receiving rejuvenation treatment, we obtained a face database of 10 529 images from 1821 patients from the author's hospital and selected two representative age-estimation algorithms for the model training. The prediction accuracies and the interpretability of calculation logic of these two facial age predictors were compared and analyzed. The mean absolute error (MAE) of a traditional support vector machine-learning model was 10.185 years; the proportion of absolute error ≤6 years was 35.90% and 68.50% ≤12 years. The MAE of a deep-learning model based on the VGG-16 framework was 3.011 years; the proportion of absolute error ≤6 years was 90.20% and 100% ≤12 years. Compared with deep learning, traditional machine-learning models have clearer computational logic, which allows them to give clinicians more specific treatment recommendations. Experimental results show that deep-learning exceeds traditional machine learning in the prediction of Chinese cosmetic patients' age. Although traditional machine learning model has better interpretability than deep-learning model, deep-learning is more accurate for clinical quantitative evaluation. Knowing the decision-making logic behind the accurate prediction of deep-learning is crucial for deeper clinical application, and requires further exploration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.