Abstract
Graphdiyne (GDY) is an emerging carbon allotrope in the graphyne (GY) family, demonstrating extensive potential applications in the fields of electronic devices, catalysis, electrochemical energy storage, and nonlinear optics. Synthesis of few-layered GDY is especially important for both electronic applications and structural characterization. This work critically summarizes the state-of-art of GDY and focuses on exploring approaches for few-layered GDY synthesis. The obstacles and challenges of GDY synthesis are also analyzed in detail. Recently developed synthetic methods are discussed such as i) the copper substrate-based method, ii) the chemical vapor deposition (CVD) method, iii) the interfacial construction method, and iv) the graphene-templated method. Throughout the discussion, the superiorities and limitations of different methods are analyzed comprehensively. These synthetic methods have provided considerable inspiration approaching synthesis of few-layered or single-layered GDY film. The work concludes with a perspective on promising research directions and remaining barriers for layer-controlled and morphology-controlled synthesis of GDY with higher crystalline quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.