Abstract

Capturing the breadth of chemical exposures in utero is critical in understanding their long-term health effects for mother and child. We explored methodological adaptations in a Non-Targeted Analysis (NTA) pipeline and evaluated the effects on chemical annotation and discovery for maternal and infant exposure. We focus on lesser-known/underreported chemicals in maternal and umbilical cord serum analyzed with liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS). The samples were collected from a demographically diverse cohort of 296 maternal-cord pairs (n = 592) recruited in San Francisco Bay area. We developed and evaluated two data processing pipelines, primarily differing by detection frequency cut-off, to extract chemical features from non-targeted analysis (NTA). We annotated the detected chemical features by matching with EPA CompTox Chemicals Dashboard (n = 860,000 chemicals) and Human Metabolome Database (n = 3140 chemicals) and applied a Kendrick Mass Defect filter to detect homologous series. We collected fragmentation spectra (MS/MS) on a subset of serum samples and matched to an experimental MS/MS database within the MS-Dial website and other experimental MS/MS spectra collected from standards in our lab. We annotated ~72 % of the features (total features = 32,197, levels 1–4). We confirmed 22 compounds with analytical standards, tentatively identified 88 compounds with MS/MS spectra, and annotated 4862 exogenous chemicals with an in-house developed annotation algorithm. We detected 36 chemicals that appear to not have been previously reported in human blood and 9 chemicals that were reported in less than five studies. Our findings underline the importance of NTA in the discovery of lesser-known/unreported chemicals important to characterize human exposures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.