Abstract

The increasing concern over multidrug resistance in pathogens has led to an ongoing search for novel antibiotics derived from soil actinobacteria. In this current investigation, actinobacteria were isolated from the rhizosphere of bamboo plants collected within the Megamalai forest of the Western Ghats in the Theni zone of Tamil Nadu, India. These actinobacteria were subjected to characterization, and their growth conditions were optimized to enhance the production of bioactive compounds. To assess antibacterial properties, the isolated Actinobacteria underwent testing using the agar plug method. The strain exhibiting notable antibacterial activity underwent further characterization through 16s rRNA gene sequencing and subsequent phylogenetic analysis. Employing response surface methodology (RSM), cultural conditions were fine-tuned. Bioactive compounds were extracted from the culture medium using ethyl acetate, and their antibacterial and antioxidant effects were evaluated through disc diffusion and DPPH radical scavenging methods, respectively. Ethyl acetate extracts were analyzed by using FT-IR and GC-MS techniques. In total, nine strains of Actinobacteria were isolated from the rhizosphere soil of bamboo. Among these, strain BS-16 displayed remarkable antibacterial activity against three strains: Staphylococcus aureus (19 mm), Bacillus subtilis (12 mm), and Streptococcus pyogenes (10 mm). This strain was identified as Streptomyces sp. The optimal conditions for bioactive compound production were determined as follows: malt extract (10 g), yeast extract (5 g), dextrose (5 g), pH 6.5, and temperature 30 °C. After a 7-day incubation period, the results showed a 6% increase in production. The ethyl acetate fraction derived from strain BS-16 exhibited dose-dependent antibacterial and antioxidant activities. FT-IR and GC-MS analyses revealed the presence of active compounds with antibacterial effects within the extract. Consequently, further investigation into the BS-16 strain holds promise for scaling up the production of bioactive compounds possessing antibacterial and antioxidant properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call