Abstract

Organometallic halide perovskites (OMHPs) have attracted broad attention as prospective materials for optoelectronic applications. Among the many anomalous properties of these materials, of special interest are the ferroelectric properties including both classical and relaxor-like components, as a potential origin of slow dynamics, field enhancement, and anomalous mobilities. Here, ferroelectric properties of the three representative OMHPs are explored, including FAPbx Sn1-x I3 (x = 0, x = 0.85) and FA0.85 MA0.15 PbI3 using band excitation piezoresponse force microscopy and contact mode Kelvin probe force microscopy, providing insight into long- and short-range dipole and charge dynamics in these materials and probing ferroelectric density of states. Furthermore, second-harmonic generation in thin films of OMHPs is observed, providing a direct information on the noncentrosymmetric polarization in such materials. Overall, the data provide strong evidence for the presence of ferroelectric domains in these systems; however, the domain dynamics is suppressed by fast ion dynamics. These materials hence present the limit of ferroelectric materials with spontaneous polarization dynamically screened by ionic and electronic carriers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.