Abstract

The fiber-filled polymer composite is one of the best materials which provides a symmetrical superior strength and stiffness to structures. With the strengthening of people’s environmental protection and resource reuse consciousness, the development of renewable materials, especially natural fiber-filled polymer composites, is receiving great attention. This study investigated the mechanical properties of polymer composites incorporating waste materials from the food processing industry and agricultural sources. Waste vegetal fiber-filled polymer biocomposites (WVFFPBs) with varying fiber types and 3D printing orientations were systematically fabricated. Subsequently, the tensile tests were executed to comprehensively assess the anisotropic mechanical behaviors of the WVFFPBs. The results demonstrated that WVFFPBs performed excellent anisotropic mechanical properties compared to pristine matrix samples as print orientation changed. As the printing angle increased from 0° to 90°, the tensile mechanical properties of the WVFFPBs displayed a decreasing trend. Moreover, the print orientation–anisotropic mechanical behavior relationship of 3D-printed WVFFPBs was revealed through the analysis of the material manufacturing characteristics and damage features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call