Abstract

The Prandtl-Tomlinson model of friction, first introduced in 1928 as a "conceptual model" for a single-atom contact, consists of a point mass that is dragged over a sinusoidal potential by a spring. After decades of virtual oblivion, it has recently found impressive validation for contacts comprising tens or even hundreds of atoms. To date, the Prandtl-Tomlinson model enjoys widespread popularity as depicting arguably the most insightful mechanical analogue to atomic-scale effects occurring at sliding interfaces. In this issue of ACS Nano, Pawlak et al. demonstrate the model's applicability to a true single-atom contact, thereby illustrating that simple mechanical representations can indeed go a long way toward explaining interactions at atomically defined interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.