Abstract
Light-emitting diodes (LEDs) are key components in display applications. The quantum efficiency of GaN/InGaN LEDs has been enhanced, leading to advancements in indoor and outdoor RGB LED display applications. White LED backlights are commonly used in displays due to the increased efficiency of InGaN LEDs. Despite efficiency, lifespan and image retention issues, OLED displays are utilized in high-end mobile phones to meet market expectations for screen response time and color saturation. Micro-LED RGB full-color displays have the potential to dominate the next-generation display market, driven by the increasing demands for resolution, power consumption and response time. Micro-LEDs are becoming smaller, reaching sizes of 50[Formula: see text][Formula: see text]m or even smaller, to meet the high-resolution requirements of displays. They offer higher contrast, brightness and faster response speeds. This research utilizes numerical simulations to develop a model for radiative and nonradiative recombination in InGaN semiconductor materials. The aim is to investigate the internal quantum efficiency (IQE) of various chip sizes, quantum well counts, well thicknesses and electron block layers under low current densities. The research reveals that the optimal structure is a single quantum well with an electron block layer (EBL), which can increase IQE from 53.85% to 80.9% at 0.01[Formula: see text]A/cm2 under low current density conditions, with a decrease in the number of quantum wells to one. The IQE efficiency improvement is 27.05%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.