Abstract

Helicobacter pylori is a pathogen related to severe diseases such as gastric cancer; because of rising antimicrobial-resistant strains, failure to eradicate H. pylori with antibiotics has increased worldwide. Multidrug-resistant H. pylori and gastric cancer is common in Mongolia; therefore, we aimed to explore alternative antimicrobial treatments and the genomes of resistant strains in this country. A total of 361 H. pylori strains isolated from patients in Mongolia were considered. Minimal inhibitory concentrations for two fluoroquinolones (ciprofloxacin and moxifloxacin), rifabutin, and furazolidone were determined via two-fold agar dilution. Genomic mutations in antibiotic-resistant strains were identified by next-generation sequencing using the Illumina Miseq platform and compared with genes from a reference H. pylori strain (26695). The resistance rate of H. pylori strains to quinolones was high (44% to ciprofloxacin and 42% to moxifloxacin), and resistance to rifabutin was low (0.5%); none were resistant to furazolidone. Most quinolone-resistant strains possessed gyrA gene mutations causing amino acid changes (e.g., N87K, A88P, and D91G/Y/N). While one rifabutin-resistant strain had amino acid-substituting mutations in rpoB (D530N and R701C), the other had three novel rpoB mutations; both rifabutin-resistant strains were sensitive to furazolidone. Overall, our findings suggest that rifabutin and/or furazolidone may be an alternative, effective H. pylori treatment in patients who have failed to respond to other treatment regimens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call