Abstract
The integration of artificial intelligence (AI) into drug discovery and development has ushered in a transformative era in pharmaceutical research. The research explores the profound impact of AI-driven approaches in drug discovery and development, demonstrating, that computational intelligence and biomedicine synergize to enhance innovation, efficiency, and precision in pharmaceutical science. AI’s influence spans multiple phases of drug development, from target identification and validation to the optimization of drug candidates, while also facilitating personalized medicine and expediting drug repurposing. Recent studies underscore the precision and swiftness that AI brings to the discovery of drug candidates and the prediction of molecular properties, illustrating the potential advantages of AI in pharmaceutical research. However, AI’s application in healthcare demands cautious consideration, as concerns such as model interpretability, ethical data usage, and regulatory frameworks loom large. The research also the critical need for ethical and secure data utilization. It investigates the methodology employed to create data visualizations that offer comprehensive insights into the advantages and disadvantages of AI algorithms in drug discovery. The analysis emphasizes that a judicious and context-specific approach to AI algorithm selection is essential to harness the transformative power of AI while mitigating its limitations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.