Abstract

Advances in contrast agents have greatly enhanced the sensitivity of magnetic resonance imaging (MRI) technique for early diagnosis of cancer. However, the commercial superparamagnetic iron oxide nanoparticles (SPION)-based contrast agents synthesized by co-precipitation method are not monodisperse with irregular morphologies and ununiform sizes. Other reported SPION-based contrast agents synthesized by solvothermal method or thermal decomposition method are limited by the bad water-dispersibility and low specificity to cancer cells. Herein, we propose a new strategy for exploring SPION-based MRI contrast agents with excellent water-dispersibility and high specificity to cancer cells. The SPION was synthesized by a polyol method and then entrapped into albumin nanospheres (AN). After that, a ligand folic acid (FA) was conjugated onto the surface of the AN to construct a SPION-AN-FA composite. The transmission electron microscope (TEM) and dynamic light scattering (DLS) results indicate that the SPION-AN-FA has a spherical shape, a uniform size and an excellent water-dispersibility (polydispersity index (PDI) <0.05). The results of laser scanning confocal microscope (LSCM) and flow cytometry demonstrate that the SPION-AN-FA nanoparticles are highly specific to MCF-7 and SPC-A-1 cells due to the recognition of ligand FA and folate receptor α (FRα). The r2/r1 value of SPION-AN-FA is around 40, which is much higher than that of Resovist® indicating that our SPION-AN-FA has a stronger T2 shortening effect. The T2-weighted images of MCF-7 cells incubated with SPION-AN-FA are significantly darker than those of MCF-7 cells incubated with AN, indicating that our SPION-AN-FA has a strong MR imaging efficacy. In view of the excellent water-dispersibility, the high specificity to cancer cells and the strong MR imaging efficacy, our SPION-AN-FA can be used as a negative MR contrast agent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.