Abstract

This paper presents a generalized reduced-order nonlinear model subjected to multi-support seismic excitation. The hysteretic, nonlinear, relationship of piers is phenomenologically captured by a calibrated Bouc-Wen model. This generalized reduced-order model is benchmarked against legacy physical experimental tests performed at the University of Bristol.A deterministic approach using real spatiotemporal ground motions recorded at the SMART-1 array, Taiwan, is employed as an alternative to a stochastic methodology used in current provision codes. This is so that the influence of nonlinearity and ground motion aleatory and epistemic effects are fully captured. Incremental Dynamic Analysis (IDA) is then performed to identify the performance levels at which this system transitions from elastic to inelastic behaviour. A parametric study is then performed to explore the effect of the spatial variability of the ground motion while bridge alignment, valley profile and ground motion intensity are modified. Results indicate that bridges over shallow valleys with a central rise are prone to significant analysis errors if multi-support excitation is not employed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.