Abstract

Semiconductor photocatalysis can be operated over a narrow pH range for wastewater treatment. In this study, a simulated solar-light-mediated bismuth tungstate (SSL/Bi2WO6) process is found to be effective for norfloxacin degradation over a narrow pH range. To broaden the operating pH range of the SSL/Bi2WO6 process, an NH4+ buffer system and an Fe3+ salt were introduced under extremely basic and acidic pH conditions, respectively. The NH4+ buffer system continuously supplied hydroxyl ions to generate ·OH radicals and prevented acidification of the solution, resulting in improved norfloxacin removal and mineralization removal under alkaline conditions. In contrast, the Fe3+ salt offered an additional homogeneous photo-sensitization pathway. The former treatment assisted in norfloxacin decay and the latter increased the collision frequency between the photo-generated hole and hydroxyl ions. Moreover, the effect of parameters such as pH and Fe3+ dosage was optimized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.