Abstract

The trabecular bone is a complex random network of interconnected rods and plates. Its trabecular structure is constantly remodelling to ensure a maintenance function. A simulated bone remodelling process was discussed in a previous study based on a BMU germ-grain model where type and orientation of local structure related to mechanical stress were not considered. In this study, we explore the potential ability of a 3D-skeleton coupled with a statistical tensor analysis to locally describe the trabecular structure for binary images. In order to add new constraints for BMU validation and BMU-shape characterisation in the simulator, we propose a strategy using inertia tensors based on the skeleton ensuring the feasibility of the entire process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.