Abstract
In this study, 1-butanol (C4H9OH) was used as a potential precursor for atmospheric pressure chemical vapour deposition grown graphene. While graphene were obtainable at moderate to high precursor flow rate, they were of double to multilayer as evident from Raman and ultra-violet visible spectroscopy. Here, a simple yet novel growth procedure was implemented to obtain monolayer graphene at much lower precursor flow rate. The procedure utilized additional copper which enable a richer flux of carbonaceous radicals to be produced through catalytic decomposition, leading to high-quality monolayer graphene to be grown on copper substrate. This type of graphene was characterized with Raman of two excitation sources, and the results were consistent with each other. It was found that it exhibited highest I2D/IG intensity ratio (~ 4.85), largest average crystallite size (La, ~ 188 nm), and smallest defect level among other samples. Due to the latter, it possessed lowest sheet resistance compared with other samples (~ 7.75 kΩ/sq). Lastly, the graphene samples were characterized using x-ray photoelectron spectroscopy, where the deconvoluted spectra reveal sub-components of sp2 and sp3 states of carbon, which could provide insights on the reaction mechanics about the transformation of butanol to graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.