Abstract
Ultrasonic guided waves, which are often generated and detected by piezoelectric transducers, are well established to monitor engineering structures. Wireless solutions are sought to eliminate cumbersome wire installation. This work proposes a method for remote ultrasonic-based structural health monitoring (SHM) using mechanoluminescence (ML). Propagating guided waves transmitted by a piezoelectric transducer attached to a structure induce elastic deformation that can be captured by elastico-ML. An ML coating composed of copper-doped zinc sulfide (ZnS:Cu) particles embedded in PVDF on a thin aluminium plate can be used to achieve the elastico-ML for the remote sensing of propagating guided waves. The simulation and experimental results indicated that a very high voltage would be required to reach the threshold pressure applied to the ML particles, which is about 1.5 MPa for ZnS particles. The high voltage was estimated to be 214 Vpp for surface waves and 750 Vpp for Lamb waves for the studied configuration. Several possible technical solutions are suggested for achieving ultrasonic-induced ML for future remote SHM systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.