Abstract

BackgroundRift Valley fever (RVF) is a zoonotic arbovirosis for which the primary hosts are domestic livestock (cattle, sheep and goats). RVF was first described in South Africa in 1950–1951. Mechanisms for short and long distance transmission have been hypothesised, but there is little supporting evidence. Here we describe RVF occurrence and spatial distribution in South Africa in 2008–11, and investigate the presence of a contagious process in order to generate hypotheses on the different mechanisms of transmission.Methodology/Principal FindingsA total of 658 cases were extracted from World Animal Health Information Database. Descriptive statistics, epidemic curves and maps were produced. The space-time K-function was used to test for evidence of space-time interaction. Five RVF outbreak waves (one in 2008, two in 2009, one in 2010 and one in 2011) of varying duration, location and size were reported. About 70% of cases (n = 471) occurred in 2010, when the epidemic was almost country-wide. No strong evidence of space-time interaction was found for 2008 or the second wave in 2009. In the first wave of 2009, a significant space-time interaction was detected for up to one month and over 40 km. In 2010 and 2011 a significant intense, short and localised space-time interaction (up to 3 days and 15 km) was detected, followed by one of lower intensity (up to 2 weeks and 35 to 90 km).Conclusions/SignificanceThe description of the spatiotemporal patterns of RVF in South Africa between 2008 and 2011 supports the hypothesis that during an epidemic, disease spread may be supported by factors other than active vector dispersal. Limitations of under-reporting and space-time K-function properties are discussed. Further spatial analyses and data are required to explain factors and mechanisms driving RVF spread.

Highlights

  • Rift Valley fever (RVF) is a vector-borne zoonotic disease caused by infection with a Phlebovirus (Family Bunyaviridae)

  • We generate hypotheses on the possible mechanisms involved in RVF spread in South Africa between 2008 and 2011

  • Our results confirm the presence of an intense, short, initial transmission process that could be attributed to active vector dispersal; and highlight the presence of another transmission mechanism of a lower intensity and over further distances that could be explained by the movements of infectious animals, passive vector dispersal or emergence of other foci

Read more

Summary

Introduction

Rift Valley fever (RVF) is a vector-borne zoonotic disease caused by infection with a Phlebovirus (Family Bunyaviridae). The main vectors are mosquitoes from the genera Aedes and Culex; primary hosts are domestic livestock (cattle, sheep and goats), but the disease can affect camels, buffaloes and other wild animals [1]. Rift Valley fever epidemics have been reported following inundation of floodplains and dambos due to unusually heavy rainfall, allowing a large number of infected Aedes eggs to hatch, like in Kenya [5] or following the introduction of infected vectors or animals in flooded areas as hypothesized in Saudi Arabia and Yemen [6]. Rift Valley fever (RVF) is a zoonotic arbovirosis for which the primary hosts are domestic livestock (cattle, sheep and goats). We describe RVF occurrence and spatial distribution in South Africa in 2008–11, and investigate the presence of a contagious process in order to generate hypotheses on the different mechanisms of transmission

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call