Abstract

Exploratory matrix factorization (EMF) techniques applied to two-way or multi-way biomedical data arrays provide new and efficient analysis tools which are currently explored to analyze large scale data sets like gene expression profiles (GEP) measured on microarrays, lipidomic or metabolomic profiles acquired by mass spectrometry (MS) and/or high performance liquid chromatography (HPLC) as well as biomedical images acquired with functional imaging techniques like functional magnetic resonance imaging (fMRI) or positron emission tomography (PET). Exploratory feature extraction techniques like, for example, Principal Component Analysis (PCA), Independent Component Analysis (ICA) or sparse Nonnegative Matrix Factorization (NMF) yield uncorrelated, statistically independent or sparsely encoded and strictly non-negative features which in case of GEPs are called eigenarrays (PCA), expression modes (ICA) or metagenes (NMF). They represent features which characterize the data sets under study and are generally considered indicative of underlying regulatory processes or functional networks and also serve as discriminative features for classification purposes. In the latter case, EMF techniques, when combined with diagnostic a priori knowledge, can directly be applied to the classification of biomedical data sets by grouping samples into different categories for diagnostic purposes or group genes, lipids, metabolic species or activity patches into functional categories for further investigation of related metabolic pathways and regulatory or functional networks. Although these techniques can be applied to large scale data sets in general, the following discussion will primarily focus on applications to microarray data sets and PET images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.