Abstract

Epidemiological studies on the effect of organophosphate esters (OPEs) on high blood pressure (BP) among children and adolescents are scant. Therefore, the main objective of the present study was to explore the effect of exposure to OPEs on high BP among children and adolescents. A total of 1340 participants were included in the current analyses. Multivariable logistic regression models were implemented to calculate odds ratios (ORs) and corresponding 95% confidence intervals (CIs) to examine the association between OPE metabolites and high BP. We also assessed the modified effect of sex, age, and overweight/obesity on this association. Furthermore, quantile g-computation (Qgcomp) and Bayesian kernel machine regression (BKMR) were exhibited to analyze the association between multiple OPE metabolite mixtures and high BP. After adjusting for covariates, the highest (vs. lowest) tertiles of bis (1-choloro-2-propyl) phosphate (BCPP), bis-2-chloroethyl phosphate (BCEP), and di-n-butyl phosphate (DBUP) were associated with 1.23 (95% CI: 0.83, 1.83), 1.27 (95% CI: 0.85, 1.92), and 1.01 (95% CI: 0.67, 1.53) odds ratios for high BP, respectively. In the Qgcomp, a quartile increase in OPE metabolite mixtures was weakly associated with an elevated risk of high BP (adjusted OR: 1.06, 95CI%: 0.81, 1.37). The results from BKMR showed a positive trend of association between OPE metabolite mixture on the risk of high BP. In conclusion, our study demonstrated that higher levels of BCPP, BCEP, and DBUP were weakly associated with high BP among US children and adolescents. Moderate evidence suggested OPE metabolite mixtures had positive joint effects on high BP. Consequently, longitudinal studies with repeated measurements are warranted to examine the relationships between multiple OPE metabolites and high blood pressure among children and adolescents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call