Abstract

Defining health-based thresholds for effective heat warnings is crucial for climate change adaptation strategies. Translating the non-linear function between heat and health effects into an effective threshold for heat warnings to protect the population is a challenge. We present a systematic analysis of heat indicators in relation to mortality. We applied distributed lag non-linear models in an individual-level case-crossover design to assess the effects of heat on mortality in Switzerland during the warm season from 2003 to 2016 for three temperature metrics (daily mean, maximum, and minimum temperature), and various threshold temperatures and heatwave definitions. Individual death records with information on residential address from the Swiss National Cohort were linked to high-resolution temperature estimates from 100 m resolution maps. Moderate (90th percentile) to extreme thresholds (99.5th percentile) of the three temperature metrics implied a significant increase in mortality (5 to 38%) in respect of the median warm-season temperature. Effects of the threshold temperatures on mortality were similar across the seven major regions in Switzerland. Heatwave duration did not modify the effect when considering delayed effects up to 7 days. This nationally representative study, accounting for small-scale exposure variability, suggests that the national heat-warning system should focus on heatwave intensity rather than duration. While a different heat-warning indicator may be appropriate in other countries, our evaluation framework is transferable to any country.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call