Abstract
In order to explore a suitable uranium adsorbent with the advantages of low-cost, recyclability and high efficiency, porous coal fly ash aerogels with different size of coal fly ash were synthesized. Among them, PCFAA-1250 (prepared with 1250 mesh coal fly ash (CFA)) showed better adsorption performance and the maximum adsorption efficiency even approached 96.5% (C0 = 10 mg L−1, m/V = 1.0 g L−1, T = 298 K, t = 24 h and pH = 3.0), which was higher than most of previous adsorbents. Langmuir and pseudo-second-order models were more likely to be used to determine the removal behavior of uranium on PCFAA, illustrating that the adsorption reaction was uniform chemisorption. Meanwhile, the adsorption process on PCFAA was spontaneous. Notably, the desorption efficiencies of all of PCFAA were more than 80% after five cycles, which suggested that PCFAA possessed good recyclability, especially PCFAA-1250. Besides, the adsorption mechanism was further revealed via XPS and the uranium ions were immobilized on the surface of adsorbents through complexation. Based on above conclusions, it could be concluded that PCFAA-1250 had the potential to be a candidate for the extraction of uranium from wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.