Abstract

Explorations of new second-order nonlinear optical (NLO) materials in the K(I)-M(II) -I(V)-O systems led to four novel mixed metal iodates, namely, K(2)M(IO(3))(4)(H(2)O)(2) (M = Mn, Co, Zn, Mg). The four compounds are isostructural and crystallize in space group I2 which is in the chiral and polar crystal class 2. Their structure features zero-dimensional {M(IO(3))(4)(H(2)O)(2)}(2-) anions that are separated by K(+) cations. The M(II) centers are ligated by two aqua ligands in trans fashion and four monodentate iodate anions. The K(+) cation is eight-coordinated by two iodate anions in bidentate chelating fashion and four other iodates in a unidentate fashion. Second harmonic generation (SHG) measurements indicate that K(2)Zn(IO(3))(4)(H(2)O)(2) and K(2)Mg(IO(3))(4)(H(2)O)(2) display moderate SHG responses that are approximately 2.3 and 1.4 times of KH(2)PO(4) (KDP), respectively, and they are also phase-matchable. The SHG response of K(2)Co(IO(3))(4)(H(2)O)(2) is much weaker (about 0.3 x KDP), and no obvious SHG signal was detected for K(2)Mn(IO(3))(4)(H(2)O)(2). Results of optical property calculations for the Zn and Mg phases revealed SHG responses of approximately 5.3 and 4.7 times of KDP, respectively, the order of Zn > Mg is in good agreement with the experiment data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call