Abstract

We present a probabilistic framework unifying two important families of exploration mechanisms recently shown to be efficient to learn complex non-linear redundant sensorimotor mappings. These two explorations mechanisms are: 1) goal babbling, 2) active learning driven by the maximization of empirically measured learning progress. We show how this generic framework allows to model several recent algorithmic architectures for exploration. Then, we propose a particular implementation using Gaussian Mixture Models, which at the same time provides an original empirical measure of the competence progress. Finally, we perform computer simulations on two simulated setups: the control of the end effector of a 7-DoF arm and the control of the formants produced by an articulatory synthesizer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.