Abstract

Motivated by the theoretically predicted Zn resonant states in the conduction band of PbTe, in the present work, we investigated the effect of Zn substitution on the thermoelectric properties in I-doped n-type PbTe. The room temperature thermopower values show good agreement with the theoretical Pisarenko plot of PbTe up to a carrier concentration of 4.17 × 10(19) cm(-3); thus, the presence of Zn resonance levels is not observed. Because of the low solubility of Zn in PbTe, a second phase of coherent ZnTe nanostructures is observed within the PbTe host matrix, which is found to reduce the lattice thermal conductivity. The reduced lattice thermal conductivity in PbTe by ZnTe nanostructures leads to notable enhancement in the figure of merit with a maximum value of 1.35 at 650 K. In contrast to the recent literature, the carrier mobility is not found to be affected by the band offset between ZnTe nanostructures and PbTe. This is explained by the quantum tunneling of the charge carrier through the narrow offset barrier and depletion width and coherent nature of the interface boundary between the two phases, i.e., ZnTe and PbTe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call