Abstract
Computational cost limits the applicability of post-Hartree-Fock methods such as coupled-cluster on larger molecular systems. The data-driven coupled-cluster (DDCC) method applies machine learning to predict the coupled-cluster two-electron amplitudes (t2) using data from second-order perturbation theory (MP2). One major limitation of the DDCC models is the size of training sets that increases exponentially with the system size. Effective sampling of the amplitude space can resolve this issue. Five different amplitude selection techniques that reduce the amount of data used for training were evaluated, an approach that also prevents model overfitting and increases the portability of data-driven coupled-cluster singles and doubles to more complex molecules or larger basis sets. In combination with a localized orbital formalism to predict the CCSD t2 amplitudes, we have achieved a 10-fold error reduction for energy calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.