Abstract

The asymmetrical long-range hopping amplitudes have a rich influence on the topological properties. Here, a non-Hermitian model including the long-range hopping amplitudes is constructed to explore those properties. It can be found that an extra topological invariant W = 2 emerges as a consequence of the long-range hopping amplitudes. Furthermore, we find that the phase W = 2 can be directly characterized by the generalized Brillouin zone (GBZ) itself through the concept of the argument principle. Meanwhile, a gapless phase dubbed as topological semimetal phase can be induced by the asymmetrical long-range hopping. Moreover, the physical origin of the topological semimetal phase can be explained by the solutions of eigen-equation. It is also shown that the skin modes exist as long as the GBZ and the Brillouin zone differ from each other. These interesting phases may be realized in an electrical-circuit simulator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call