Abstract

In this paper, we study the T-interval-connected dynamic graphs from the point of view of the time necessary and sufficient for their exploration by a mobile entity (agent). A dynamic graph (more precisely, an evolving graph) is T-interval-connected (T ≥ 1) if, for every window of T consecutive time steps, there exists a connected spanning subgraph that is stable (always present) during this period. This property of connection stability over time was introduced by Kuhn, Lynch and Oshman (Kuhn et al. 14) (STOC 2010). We focus on the case when the underlying graph is a ring of size n, and we show that the worst-case time complexity for the exploration problem is 2n − T − Θ(1) time units if the agent knows the dynamics of the graph, and $n+ \frac {n}{\max \{1, T-1\} } (\delta -1) \pm {\Theta }(\delta )$ time units otherwise, where δ is the maximum time between two successive appearances of an edge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.