Abstract

In order to study any material the first principles approach has been considered an appropriate forum and deemed the best remedy to ensure the validity of the achievements/results obtained either theoretically or experimentally. We are, therefore, motivated to use this approach to explore the structural, optoelectronic and vibrational properties of Sb2S3 while utilizing the plane-wave pseudopotential technique and conjugate gradient method employed through the CASTEP simulation code. The crystal structure of Sb2S3 is optimized in orthorhombic phase having space group Pnma with lattice parameters a = 11.31 Å, b = 3.84 Å and c = 11.23 Å. It is noticed that magnitude of these lattice parameters approximately replicate the formerly reported theoretical as well as experimental results. The energy band gap is found to be 1.012 eV, which is utter evidence that the studied compound belongs to semiconductor category of the materials. The optical parameters unveil that Sb2S3 is capable to absorb wide range of radiations from the ultraviolet (UV) portion of the spectrum. The dynamical analysis through density functional perturbation theory (DFPT) shows that there is no soft mode which further ensures dynamical stability of Sb2S3. The optical analysis of the studied compound are enough to declare it a potential material for applications in solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call