Abstract

Carthamus tinctorius L. (Honghua, HH) is an herbal medicine and functional food widely used to treat chronic liver diseases, including liver fibrosis. By using network pharmacology and molecular docking experiments, the present study aims to determine the bioactive components, potential targets, and molecular mechanisms of HH for treating liver fibrosis. The components of HH were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and literature, and the SwissTargetPrediction database was used to predict the treatment targets of HH. Genecards and DisGeNET databases contained targets for liver fibrosis, and the STRING database provided networks of protein–protein interactions. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the Database of Annotation, Visualization and Integrated Discovery. The protein–protein interactive network and drug–component–major target–pathway interactive network were visualized and analyzed by Cytoscape software. Finally, Autodock Vina and Discovery Studio software were used for molecular docking Validation. A total of 23 candidate bioactive compounds with 187 treatment targets of HH were acquired from the databases and literature. A total of 121 overlapping targets between HH and liver fibrosis were found to provide the molecular basis for HH on liver fibrosis. Quercetin, beta carotene, and lignan were identified as key components with targeting to ESR1, PIK3CA, and MTOR. HH is engaged in the intervention of various signaling cascades associated with liver fibrosis, such as PI3K/AKT/mTOR pathway, MAPK pathway, and PPAR pathway. In conclusion, HH treats liver fibrosis through multi-component, multi-target, and multi-pathway mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call