Abstract

The polarization curve is the most important profile to evaluate the performance of proton-exchange membrane fuel cells (PEMFCs). To explore the important thermodynamic parameters and their correlation with the composition, fabrication, and operational settings, a comprehensive data set consisting of 446 polarization curves from 191 perfluorosulfonate and 255 sulfonated hydrocarbon-based PEMs is collected. Then, a Markov chain Monte Carlo simulation within the Bayesian frame provides higher than 93% confidence to extract six important thermodynamic parameters including open-circuit potential, the transfer coefficient, the current loss, the reference exchange current density, the internal resistance, and the limiting current density. An extreme gradient boosting algorithm affords a mean determinative coefficient of 0.89 to predict the whole polarization curve and a confidence of 94% to predict the peak power density (PPD). Both approaches to explore the polarization curve for PEMFCs show good robustness in the blind test. Overall, the PPD is positively correlated with the ion-exchange capacity of the polymer, operational temperature, and humidity and is negatively affected by internal resistance, membrane thickness, and the loading of the catalyst. The flow rate of fuels can effectively enhance them, while the increase of catalyst loading or fuel concentration shows deleterious impacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.