Abstract

The anomalous dependence of near-threshold harmonics in the molecular ion on the ellipticity of the driving near-infrared laser field is studied theoretically based on accurate solution of the time-dependent Schrödinger equation in prolate spheroidal coordinates with the help of the generalized pseudospectral method. For these harmonics, the maximum radiation energy corresponds to a non-zero ellipticity of the driving field. Our analysis reveals that the origin of the phenomenon lies in the near-resonant excitation of π-symmetry molecular orbitals. The excited states responsible for the anomalous ellipticity dependence of different near-threshold harmonics are identified. The effect is confirmed at the equilibrium internuclear separation R = 2 a.u. as well as for stretched molecules at R = 3 a.u.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.