Abstract
The development and application of nano-drug carriers might provide an excellent opportunity for cancer therapy. However, it is still an important challenge to realize the regulation and control of drug loading by analyzing the assembly process of carrier-loaded drugs. Herein, we show a "self-contained bioactive nanocarrier" system, which is prepared from ursolic acid, one of the very promising biologically active natural products with self-assembly properties. The study decrypts the assembly process of drug-carrier interaction and achieves the regulation of drug loading by controlling the interaction force. This nanocarrier highlights the unique advantages of active natural products in therapeutic efficacy and health benefits. In antitumor experiments, the carrier and drug demonstrated synergistic therapeutic efficacy. Furthermore, the nanocarrier is biosafe and capable of reducing the risk of liver damage induced by chemotherapeutics through the upregulation of key antioxidant pathways. Taken together, this "self-contained bioactive nanocarrier" system makes up for the drawback that conventional nanocarriers have no therapeutic efficacy and health benefits and eliminates the trouble of the toxic side effects associated with chemotherapy agents and the additional toxicity caused by long-term use of nanocarriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.