Abstract

High-level electronic structure calculations were used to study the mechanism of the reaction of ClONO2 with HCl in neutral water clusters containing one to five solvating water molecules. For the reaction between molecular HCl and ClONO2, the barrier decreases from 42 kcal mol-1 (uncatalyzed) to essentially zero when catalyzed by only two water molecules, where the reaction products involve Cl2 and HONO2. The calculations thus predict that the gas-phase reaction may be important in the stratospheric reactivation of ClONO2. The reaction between ClONO2 and solvated H3O+Cl-, as on the polar stratospheric cloud (PSC) surface, was investigated with clusters involving up to seven water molecules. The ice-catalyzed reaction involves an ionic mechanism whereby charge transfer to ClONO2 from the attacking nucleophile leads to significant ionization along the Cl−ONO2 bond. The effect of the size of the first solvation shell of Cl- is addressed by our calculations. In a cluster containing three waters and a five-wa...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.