Abstract

Spinal cord injury (SCI) is a highly complex neurological disease, but there is no effective repair method. Quercetin is a flavonol drug and has a variety of biological activities, such as scavenging oxygen free radicals in the body to resist oxidation, inhibiting inflammation, and so on. In this study, quercetin was firstly demonstrated to reduce tissue damage, promote neuron survival and repair motor function after SCI in rats through in vivo experiments. Then, 293 potential targets of quercetin repair for SCI were predicted by network pharmacology. GO analysis revealed that the biological processes of potential targets focused mainly on signal transduction, negative regulation of the apoptotic process, protein phosphorylation, drug response, and so on. Similarly, KEGG analysis suggested that these potential targets were involved in cell growth regulation, differentiation, apoptosis, and a few metabolic pathways. PPI network analysis predicted that the key genes were EP300, CREBBP, SRC, HSP90AA1, TP53, PIK3R1, EGFR, ESR1, and CBL. Further, the molecular docking showed that quercetin binds well with these proteins. Finally, RT-qPCR and Western blotting experiments verified that quercetin downregulated the expression levels of PIK3R1 and EGFR. It is suggested that quercetin can repair SCI in rats through PI3K-AKT signaling pathway and EGFR/MAPK pathway, which may provide a new theoretical basis for the repair of spinal cord injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call