Abstract

Exploration of the intermolecular binding energy in nanometer-sized small water clusters in hydrophobic solvents and its evolution with the increase in the cluster size until bulk-type geometry is reached constitute a fascinating area of research in contemporary chemical/biological physics. In this contribution we have used femtosecond/picosecond-resolved solvation dynamics and fluorescence anisotropy techniques to explore the dynamical evolution of water clusters in dioxane continuum as a function of water concentration. We have also used temperature dependent picosecond-resolved solvation dynamics in order to explore the magnitude of the intermolecular bonding energy in the water clusters in bulk dioxane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call