Abstract

Mercury II chloride (HgCl 2) toxicity was investigated in Sprague–Dawley rats using high-resolution magic angle spinning (HRMAS) 1H NMR spectroscopy in conjunction with principal component analysis (PCA). Intact renal cortex and papilla samples from Sprague–Dawley rats treated with HgCl 2 at two dose levels (0.5 and 2 mg/kg) and from matched controls ( n = 5 per group) were assessed at 48 h p.d. HgCl 2 caused depletion of renal osmolytes such as glycerophosphocholine (GPC), betaine, trimethylamine N-oxide (TMAO), myo-inositol and taurine in both the renal cortex and the papilla. In addition, relatively higher concentrations of valine, isobutyrate, threonine and glutamate were observed in HgCl 2-treated rats, particularly in the renal cortex, which may reflect a counterbalance response to the observed loss of other classes of renal osmolytes. Increased levels of glutamate were present in the cortex of treated rats, which may be associated with HgCl 2-induced renal acidosis and disruption of the tricarboxylic acid cycle. A dose response was observed in both cortical and papillary tissue with increasing severity of metabolic disruption in the high dose group. 1H HRMAS NMR profiles of individual animals correlated well with conventional clinical chemistry and histology confirming the reproducibility of the technology and generating complementary molecular pathway information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.